
A Distributed Shared Memory Library
with Global-View Tasks on

High-Performance Interconnects

Wataru Endo, Kenjiro Taura

Graduate School of Information Science and Technology
The University of Tokyo

March 9, 2018 @ SIAM-PP

1 / 40



Summary of This Talk

• Goal of our research:
• Improve the productivity & performance of applications running on

distributed memory machines

• We focus on global-view programming models:

1 Distributed Shared Memory (DSM) as a unified memory model
2 Global-view task scheduling as a unified execution model

• We are implementing 3 components:

1 A software DSM library optimized for recent hardware
2 A work-stealing scheduler over DSM
3 A communication library for recent interconnects & multi-core

processors

2 / 40



Background: Shared memory vs. Distributed
memory

• Shared memory
• All of the cores share the

memory
• Cores communicate

implicitly though store/load
instructions

• High productivity,
but low scalability

• Distributed memory
• Each core (or node) has its

own memory
• Communications are explicit

(e.g. MPI)
• High scalability,

but low productivity

Interconnect

…
MPI_Send(…);

...

…
MPI_Recv(…);

...

…

3 / 40



Background: Distributed Shared Memory (DSM)

• Distributed Shared Memory (DSM)
• Physically distributed, virtually shared
• The system automatically synchronizes the caches between cores

Interconnect
Coherence
Protocol

…

• History of DSM
• 1990s: Early DSM systems appeared

• e.g. TreadMarks [Keleher et al. ’94], JIAJIA [Hu et al.’98]
• 2000s-: PGAS systems replaced them

• e.g. UPC [El-Ghazawi et al. ’02], X10 [Charles et al. ’05], Chapel
[Chamberlain et al. ’07], OpenSHMEM [Chapman et al. ’10]

• Scalable & global-view programming models
• Explicit communications are still burdensome

4 / 40



Why DSM again?
1 Improvement of network speed [Ramesh ’13]

Latency

DRAM Internode
1990’s ≈ 100ns ≈ 100µs
2010’s ≈ 50ns ≈ 500ns

Bandwidth

DRAM Internode
1990’s ≈ 2Gbps ≈ 10Mbps
2010’s ≈ 250Gbps ≈ 100Gbps

2 Relationship with many-core architectures
• Shared memory is considered as a bottleneck of scalability
• Techniques for DSM are revisited

• e.g. Relaxed consistency, multiple-writer protocols

Intel Xeon Phi 1

1https:
//www.intel.co.jp/content/www/jp/ja/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html

5 / 40

https://www.intel.co.jp/content/www/jp/ja/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
https://www.intel.co.jp/content/www/jp/ja/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html


Design of First Prototype DSM

• Implemented a DSM prototype

• Borrowing the ideas from ArgoDSM
[Kaxiras et al. ’15]
• Relaxed consistency

(SC-for-DRF)
• Page-based (vs.

compiler-based)
• Directory-based (vs. snoopy)
• Multiple-Reader Multiple-Writer

(vs. Single-Writer)
• Home-based (vs. homeless)
• Eager writeback (vs. Lazy)

• Added minor features (e.g. dynamic
page allocation)

readersowner writersaddress

0xXXXX

Manager node

Directory

ownerstate sharedaddress

0xXXXX

Directory cache

Sharer node "A"

Owner node "X"

data
{A} {A}

falseModified X

X

Directory structure of DSM

6 / 40



Evaluation: First Prototype DSM

• Microbenchmark of memory operations

• Using 2 nodes of ReedBush-U, an
InfiniBand cluster in our university

• Each memory operation consumes
≈ 100µsec
• cf. Round-trip RDMA latency ≈ 2µsec
• Room to improve the implementation

quality
• The write-back operation is the slowest

• Due to packing & unpacking diffs
for merging the dirty pages

for (int k = 0; k < size; ++k)

s += p[k]; // read

for (int k = 0; k < size; ++k)

p[k] = x; // write

SD_fence(); // write back

SI_fence(); // invalidation

0 5000 10000 15000 20000 25000 30000
Size [bytes]

0

100

200

300

400

500

600

700

T
im

e
 [
µ
se

c]

read

write

SD_fence

SI_fence

Horizontal axis: execution time,
vertical axis: access size

7 / 40



Cache invalidation methods: Directory-based

• Directory-based invalidations
• Tracking sharers in centralized directories
• The standard method to implement large-scale shared memory

• Problems of directories:

1 Storage cost to hold sharers
• Less important in software-based shared memory

2 Communication traffic of small invalidation messages
3 Complex state management leads to system bugs

CacheCacheCacheCache
sharers	=	{1}

Directory
…

Interconnection	network

Core 0 Core 1 Core 2 Core (P-1)

8 / 40



Cache invalidation methods: Directory-less

• “Directory-less” approaches:

1 Write notices
• Used in traditional DSM systems (e.g. TreadMarks)
• Aggregate invalidation messages based on synchronization orders

of relaxed consistency

2 (Logical-)timestamp-based coherence [Yu et al. ’15]
• Invalidate cache blocks based on logical timestamps

(= Lamport clocks)

• We are implementing a hybrid approach of write notice & timestamp-based
approach [Yao et al. ’16] in a software DSM
• Not ready for evaluation now

9 / 40



Global-view Task Scheduling

• Global-view task parallelism
• Dynamically schedule tasks beyond the

nodes
• Promising as a unified execution model for

distributed systems

• Library-based implementation techniques:

1 User-level threading + work-stealing
• Typical in shared-memory schedulers

(.g. MassiveThreads [Nakashima et al.
’14], QThreads [Wheeler et al. ’08],
Cilk [Blumofe et al. ’95])

2 Iso-address
• Globally allocate the same address

range for each call stack
• Used in distributed memory schedulers

(e.g. Charm++ [Acun et al. ’14])

Task-dependency graph

Interconnect

…

10 / 40



Global-view Task Scheduling on DSM

• Typical distributed-memory schedulers are not fully transparent
• Consider a simple program with a pointer dereference:

void f(void* p) {

*(int*)p = 1;

// Accessing a call stack of another thread

}

int g() {

int x;

thread_t t = thread_fork(&f, &x);

thread_join(t);

return x;

}

• Solution: coherent call stacks
• Similar, but a compiler-based approach:

(e.g. DAG Consistency [Blumofe et al. ’96])
• We implemented a library-based method to manage call stacks in DSM

• SIGSEGV handlers for call stacks are automatically disabled and
avoid deadlocks

11 / 40



Evaluation: Global-view Task Scheduling on DSM

• Running a microbenchmark to
measure the scheduler
performance
• Calculating fib(30) on the

DSM & global-view
work-stealing scheduler

• 1 worker thread / node

• Did not scale well
• The sequential performance

was also unsatisfactory
(264x worse than
MassiveThreads)

void fib(int n, int* r) {

if (n < 2) { *r = n; }

else {

int a, b;

spawn fib(n-1, &a);

fib(n-2, &b);

sync;

*r = a + b;

}

}

0 2 4 6 8 10 12 14 16
Number of Processes

0

10

20

30

40

50

60

E
x
e
cu

ti
o
n
 T

im
e
 [

se
c]

12 / 40



Communication library for DSM

• We implemented a communication library designed mainly
for DSM (or PGAS) systems
• Such systems tend to require fine-grained communications
• Current CPU & interconnect architectures require multi-threaded

communications
• Traditional communication libraries are optimized for coarse-grained &

single-threaded communications

• The rest of this talk briefly introduces:
• Wataru Endo, Kenjiro Taura. “Parallelized Software Offloading of

Low-Level Communication with User-Level Threads.” HPC Asia 2018.

13 / 40



Software Offloading

• We are focusing on software offloading
[Vaidyanathan et al. ’15] to deal with small
messages:
• Use dedicated threads for

communication
• Delegate the communication

processing via lockless queues

• Benefits of software offloading:
• Improves message rates
• Reduces message injection overheads

• Example: Software offloading in MPI
[Vaidyanathan et al. ’15]:
• Set the underlying MPI runtime to

MPI THREAD SERIALIZED
• Only one thread handles actual MPI

communication

Application threads

Dedicated
thread

post

Lockless queue

dequeue

enqueue

Communication
request

Interconnect hardware

14 / 40



Problems of Software Offloading

• Software offloading has disadvantages

1 Latency is increased
2 CPU resources are consumed in vain

• Example: PAMI [Kumar et al. ’13]
• Implements an offloading method as a low-level communication library
• Can start & stop the offloading threads using a special feature of

POWER8 processor

• We provide a method to dynamically start & stop the offloading threads
• Using a user-level thread (ULT) library

15 / 40



Implementation: How to Keep Awake

• Problem:
How to guarantee that the communication threads are NOT sleeping
when there are ongoing requests?
• There may be a race condition if

1 The queue’s producer considers the consumer is awake
2 The queue’s consumer starts sleeping

• Solutions

1 Mutexes + condition variables
• A standard solution for this problem
• Suffers from the overhead of system calls

2 Atomic operations + user-level threads
• Minimizes the overhead to synchronize between threads
• Embed a bit whether the consumer is sleeping or not in the

queue’s counter
• If sleeping, awake the consumer using user-level threads

16 / 40



Evaluation

• Microbenchmark on these metrics:
• Latency, overhead, and message rate

• Runs 2 processes (1 process/node)
• One process has benchmark threads repeating RDMA READ

• MassiveThreads 0.97 as a ULT system
• Change to use parent-first scheduling (child-first is the default)
• Run only 10 worker threads/node to avoid NUMA effects

Evaluation Environment

CPU Intel R⃝ Xeon R⃝ E5-2680 v2
2.80GHz, 2 sockets× 10 cores/node

Memory 16GB/node
Interconnect Mellanox R⃝ Connect-IB R⃝ dual port

InfiniBand FDR 2-port (only 1 port is used)
Driver Mellanox R⃝ OFED 2.4-1.0.4
OS Red Hat R⃝ Enterprise Linux R⃝ Server

release 6.5 (Santiago)
Compiler GCC 4.4.7 (with the option “-O3”)

17 / 40



Evaluation Results: Latency with 1 QP & CQ
• Reference: 2.01 µsec in perftest benchmark
• 3.197 µsec in Direct injection

• Overhead of separating polling threads
• 3.804µsec in Static offloading

• Overhead of sending a request to an executor thread
• 4.21µsec in Dynamic offloading

• Overhead of waking up an executor & completer thread

100 101 102 103 104 105 106 107

Message Size [bytes]

0

5

10

15

20

La
te

n
cy

 [
µ
se

c]

1 thread

2 threads

4 threads

8 threads

12 threads

16 threads

Direct injection

100 101 102 103 104 105 106 107

Message Size [bytes]

0

5

10

15

20
La

te
n
cy

 [
µ
se

c]

1 thread

2 threads

4 threads

8 threads

12 threads

16 threads

Static offloading

100 101 102 103 104 105 106 107

Message Size [bytes]

0

5

10

15

20

La
te

n
cy

 [
µ
se

c]

1 thread

2 threads

4 threads

8 threads

12 threads

16 threads

Dynamic offloading

Horizontal axis: message size. Vertical axis: round-trip latency.
Each line represents # of requester threads.

18 / 40



Evaluation Results: Message Rate with Multiple QPs
& CQs
• The aggregated message rate increased to about 20 million/sec

• With more QPs & CQs up to 6
• Highly degraded with a few QPs & requester threads

• Workers are out of resources in “Fork”
• Additional synchronizations in “Condition variables”

0 2 4 6 8 10 12 14 16

Number of Requester Threads

0

5

10

15

20

25

M
e
ss

a
g
e
 R

a
te

 [
10

6
 m

sg
s/

se
c]

1 QP
2 QPs
3 QPs
4 QPs
6 QPs
8 QPs

Fork (parent-first)

0 2 4 6 8 10 12 14 16

Number of Requester Threads

0

5

10

15

20

25

M
e
ss

a
g
e
 R

a
te

 [
10

6
 m

sg
s/

se
c]

1 QP
2 QPs
3 QPs
4 QPs
6 QPs
8 QPs

Condition variables

Horizontal axis: # of requester threads. Vertical axis: message rate.
Each line represents # of QPs & CQs.

19 / 40



Conclusions

• Runtime systems for global-view programming models
• A Distributed Shared Memory (DSM) library
• A global-view task scheduler based on the DSM

• Transparent execution of shared-memory task-parallel programs
• A communication library for implementing the DSM

• Software offloading for efficient fine-grained communications on
multi-core architectures

• Future work
• Implement a directory-less DSM system
• Evaluate on real applications

20 / 40


