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Summary

e Background: RDMA-capable interconnects provide new design options for middleware
* We particularly focused on utilizing RDMA for distributed shared memory (DSM)
* Motivation: existing RDMA-based DSM cannot fully exploit the performance of RDMA
e Contributions:
* Implemented a DSM library “MENPS” (“MENPS is Not a PGAS System”)
® Runs OpenMP programs in C/C++ w/ minimal modifications
® Propose two changes to the DSM coherence protocol for exploiting RDMA:

* Floating home-based protocol to accelerate write operations
® Hybrid invalidation to accelerate read operations

e Evaluation: NAS Parallel Benchmarks [Bailey et al.'91]

* MENPS accelerated two of five OpenMP applications using multiple nodes
* MENPS performed better than an RDMA-based DSM system Argo [Kaxiras et al."15]
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Introduction (1/4): Two memory models

e Shared memory * Distributed memory
¢ All of the cores share the address space ® Separate address space for each node
® Implicit communications by the underlying ¢ Usually programmed w/ MPI

memory system
® Pros ©: high scalability

* Pros ©: easy to program, ® Cons ®: poor application productivity

similarity to sequential programming
® Cons @: not available with many cores wrsodls |

MPL_Recy(..);

Interconnect
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Introduction (2/4): DSM

¢ Distributed Shared Memory (DSM)

® Physically distributed, logically shared
All of the cores share the same address space (as in shared memory)
¢ Synchronizes caches with coherence protocols

Pros ®: high application productivity as in shared memory
Cons ®: often difficult to scale due to inter-node latency
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Introduction (3/4): Trends of shared-memory systems

¢ Hardware shared-memory systems

® Multi-core processors with increasing core counts
® Success of cache-coherent NUMA architectures (= hardware DSM)

B 5
B = L ]
i
‘ Eg ]
AMD Opteron?2 Intel Xeon Phi3 IBM Power AC9224 Fujitsu A64FX> (Fugaku's
(max. 72 cores) (Main component of Summit) CPU, 48 cores/node)

* Software shared-memory systems
® - 1990s: Many researchers have contributed to DSM
® “The lasting impact of these systems has not been high” [Ramesh et al. "11]
® 2000s -: HPC community switched to Partitioned Global Address Space (PGAS)
® Pros ©: better scaling / Cons ®: limited productivity due to the lack of caches

*https://upload uikinedia. org/wikipedia/connons/9/91/AMD_Opteron_2212_IMGP1795. jpg

3https://waw.intel.co. jp/content/www/jp/ja/architecture- and- tech /intel-many- i itecture.html
“https://uwv.ibn.com/products/pover- systems-ac922

Shttps://uwww.fujitsu.com/global/ Inages/supercomputer- fugaku.pdf
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Introduction (4/4): Motivation

e We focused on the utilization of remote direct memory access (RDMA):
® Inter-node communication acceleration of interconnects
® Pros ©: low latency, high BW, kernel bypass
® Cons ®@: specific restrictions of interfaces

* Today's RDMA latency ~ 1us

. . i 6
* Only several times slower than inter-socket latency InfiniBand products of Mellanox

® Problem: the existing RDMA-based DSM protocols are not capable for fully exploiting RDMA

/vt

® They depend on centralized directory structures ‘\‘

@ They depend on remote diff merging or remote interrupts (“trilemma”)

Shttps://uwuw.mellanox. com/products
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Contributions

* Implemented an experimental RDMA-based DSM “MENPS”

® Runs OpenMP programs in C/C++ with minimal modifications
® Based on release consistency

* Two proposed changes to the DSM protocol to exploit RDMA
@ Floating home-based protocol

® Hybrid invalidation using write notices & logical leases
e Evaluation using NAS Parallel Benchmarks [Bailey et al. '91]
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Background: Release Consistency (1/3)

* Release Consistency (RC)

® One of the major consistency models for DSM systems

® Pros ©: enables reordering of reads/writes, relatively easy to understand
® Requirements of release consistency (a) program order LN

® Reads & writes should follow the order specified by the program

co---xe=1
| tmpgi=yi--- :
! ! W(v)c = a write of the value ¢
- po - to the variable v
P W(x)1 ———— R(y)tmpg
0 R(v)c = aread of v resulting in ¢
po
P W(y)T ————— R(x)tmp;
1 I I
| |
Ly !
tmpq =X%; --- )
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Background: Release Consistency (2/3)

® Requirements of release consistency (b)
release-acquire synchronization order

® Programmers need to specify synchronizations along with reads/writes

W(x)1

po

barrier()

po

po

b rel acq

R(y)tmpg

W(y)1

po

po X

nization order

read from

PO R(x)tmp;

rel acq

barrier()
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Background: Release Consistency (3/3)

* Why do we think of release-acquire synchronizations?
® Because they can be generalized not only for barriers but also for mutexes
* Arelease fence corresponds to applying writes,
and an acquire fence corresponds to cache invalidation

lock(L);
X:=1;
unlock(L);

po po
lock(L) — W(x)1 —F rel unlock(L)

synchronization order™

0

—__read from

[ o
P R(x)1 p~> unlock(L)

lock(L) ac
P, ock(L) acq

lock(L);
tmp =X
unlock(L);
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Background: False sharing in DSM systems

® Reordering is not accomplished only with relaxing consistency
® Real shared-memory systems process caches as blocks
* False sharing

® Multiple processes writing on the same cache block
* Memory systems must preserve correct semantics

data[I__] data[l_IJ rel

Po i
modify
p data[[__] data []l:] rel
1 |
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acq acq
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Background: Single-Writer DSM

¢ Single-writer protocols
® Only a single writer process can write on the block at a time
* Impossible to implement Single-writer DSM purely with RDMA
® Due to the system calls for protecting remote memory

data[I__] data []:I] write protect

T

modn’y read
data (T
P2

acq acq

rel
0 |
modify \
p,  data ] data (1) rel  write ownersh|p
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Background: Multiple-writer DSM

* Multiple-writer (MW) protocols [Carter et al.’91]

® Generate diffs by comparing twins before & after writes
¢ Allow multiple processes to concurrently write on the same cache block
¢ Mitigate the performance degradation of false sharing

P

dlone diff S qiff [ I—-
twin (I ] twin[I__ ] twin[I__]
data[I__|- data[l__] data []:I] data[l_ Il | data(l_ Il pdata (1IN
|
modify
clona diffy diff (W] | diff (]
twin [I__] twin[I__ ] twin[I__]
data[I__ |- data[l__] data l!:] data (Il ] pdata (IHI | data (1IN
|
modify
merge merge
data(lIL ] datallL ] data[llL | datall_ ] Sdata[I_ 1] Ydata 1IN
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Background: Multiple-Writer + Release Consistency

* A naive example of implementing multiple-writer release-consistent DSM

® Pros ©: communications for writes can be delayed until the next fence
® Cons @: diffs must be applied in all of the processes

init. X = Xg, ¥ = Yo, X & y are on the same cache block by

W(X)X1 (X1 =X0) rel
Po

W(y)y1 v \ (y1- YO)A rel
Py
V \, v \ ROOX1 ROY)Y1
)

merge merge  ac
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Background: Home-based Multiple-Writer

* Home-based Multiple-Writer DSM [zhou et al. '96]

* Aggregate diffs to a home node
® Pros ©: only one application for each diff
® Cons ®@: a mismatch between the home and writer increases the latency for merging

init. X = Xg, ¥ = Yo, X&y are on the same cache block byy

W(x)x1 (X1 =%0) rel
Po

W(y)y1 \]\ \ (Y1 =Yo) rel
Py
b \/ \, \f \ R(XOX1 R(Y)Y1
2 V acq V acq \]readb
Xy
P3

merge merge

(home)
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Background: Restrictions of RDMA programming

* Only two available types of RDMA operations:
® One-sided writes/reads (RDMA READ/WRITE)
® Atomic operations (RDMA compare-and-swap, fetch-and-add)

® Various restrictions of RDMA programming:

@ Unable to notify the remote nodes (Except for RDMA WRITE with Immediate)

® Hard to delegate computation to remote CPUs
* Decentralized designs are desirable

® Need to place data in contiguous buffers for performance

® Unable to scatter to/gather from remote buffers
© Necessary to register the memory before transfers

® Registration may be slower than communications [Frey et al. '09]
® RDMA atomics are not synchronized with processor atomics
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Preliminary Evaluation: RDMA-based DSM

® Three methods for merging diffs to a home node

® PackDiff: Two-sided messaging for transfering packed diffs
* DiscontiguousWrite: One-sided discontiguous RDMA WRITEs
® ContiguousWrite: A single RDMA WRITE of the whole block (+ diff merge)

* Assuming a 32 KiB cache block
* Microbenchmarking result of latency
® ContiguousWrite < PackDiff < DiscontiguousWrite (lower is better)

Latency w/ 50% changes

PackDiff 309 s
DiscontiguousWrite 5042 ps
ContiguousWrite 4.5ps

* The overall latency is dominated by software overhead rather than communications

17734



Problems of the existing RDMA-based DSM protocols

Traditional

Multiple-Writer

No remote
interrupts
Floating
Home-based

RDMA
WRITE-based

Multiple-Writer
No diff
packing

No
fine-grained
writes

Single-Writer

@ Traditional home-based MW (e.g., HLRC [zhou et al. '96])

* Software overhead due to packing/unpacking diffs
® Does not concide with the zero-copy nature

® RDMA WRITE-based MW (e.g., Argo [Kaxiras et al. '15])

* Software overhead coming from many small RDMA
WRITEs

* RDMA does not transfer fine-grained messages
efficiently

© Single-Writer (e.g., MAGI [Hong et al. "19])

* Messaging is needed to protecting writes at remote
cores

® Messaging inherently increases remote CPU overhead
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Proposal: Floating home-based DSM (1/2)

* Floating Home-based DSM

® Complete merging by home migration
® Multiple-writer, but serializes merging in release fences
* Transfer master versions of cache blocks, not diffs

init. X = Xg, ¥ = Yo, x&y are on the same cache block byy

W(X)Xq merge re|

b W(y)ys [; \ §> rel ‘
L // X merge A ?

\’ /&’ead bxy
]

acq acq R()x1 R(y)ys

home
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Proposal: Floating home-based DSM (2/2)

Why does our protocol solve the trilemma?

@ No diff packing
Traditional

Multiple-Writer ® Only coarse-grained master versions are transferred

® No fine-grained RDMA WRITEs

No * Home migrations can be implemented w/
No remote .
interrupts fine-grained coarse-grained RDMA READ & ATOMICs
Floating writes .
Home-based ©® No messaging
RDMA ® Multiple-writer protocols do not require remote
WRITE-based Single-Writer

interrupts for write protection
Multiple-Writer

No diff
packing
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Proposal: Hybrid invalidation (1/4)

® Cache invalidation is orthogonal to processing writes

* Mainly determines the read performance
® Calculates which cache blocks must be invalidated at acquire fences

e Our basic idea: write notices (WNS) [Keleher et al. '94]

® Synchronized operations piggybacks a set of the written block IDs
® This set is gradually broadcast via synchronized operations

init. x = Xg, X is on a cache block by

inv(by)
R(X)Xg rel acq R(X¥)xq
Po

; \l W(X)X1 /\/\/st{bx}
L acq

rel
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Proposal: Hybrid invalidation (2/4)

e Write notices enable us to implement our “fast read” method

® Each write notice carries the process ID of the last releaser
® |In the best case, a read completes w/ a single RDMA READ from the last releaser in the
synchronization order

e ® No need to search for the current home node

init. X = X, Y = Yo, X & y are on the same cache block byy

W(x)x; MErge rq

® Y
migrate
P W(y)y1 rel ) home.
1 X Y 'y S
WNs={(byy. Po, O)X \/{\/Ns={(bxy, P, 1)} /X{RDMA READ byy
P2

acq inv(byy) acq RGOX1 R(Y)y1

Po

22/34



Proposal: Hybrid invalidation (3/4)

e © Write notices enable to accelerate reads (“fast read”)
e ® Hard to discard write notices

* Need to confirm that all of the processes processed the write notice
* Traditional DSM systems implemented global garbage collection mechanisms
(e.g., TreadMarks [Keleher et al. '94])
® One of the reasons complicating the design
* RDMA is not capable of broadcasting
4

Decentralize the removal of write notices by Logical leases [Yu et al. 15]
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Proposal: Hybrid invalidation (4/4)

* Logical leases [Yuetal."15]

* |Invalidate caches (or WNs) based on logical timestamps
® Readers increases the read timestamp (= when a cache becomes stale) at the home node

* Writers increases the write timestamp to invalidate old replicas
® Both write notices and cache blocks can be discarded based on timestamps

init. X = Xg, X is on the cache block by (home = P,),
rtS(p, Py = WS, py = rel_tsp = acq_tsp = 0 for all P
S (b, py) < aCq_tsp,
acq_tsp, =11 J, 1S (py,pg) = 21

rts(bx,po) =10 ]
acq inv(x) R(X)X4

R(x)x
Po (X)Xo rel
rel_tsp, =0
WEs(p, py =11/ Teltsp, =11
b W()Xg  TtS(p,.py) =11
1 = ! <
acq rel rtS(bX’p” =21
acq_tsp, =0 migrate
P> /

MtS(by,py) = 10 home
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Implementation

* MENPS includes a simple layer for running OpenMP programs
* Implements the OpenMP ABI functions emitted by the compiler
* No code transformation or special compiler required
because call stacks are shared (i.e., everything-shared DSM [Costa et al. '06])
* Minimal modifications to the application are needed
(e.g., annotations to global variables, avoid using threadprivate)
® Running multiple threads in each process (hybrid parallelization)
* |n detail, both the system and application use user-level threads

Enter parallel DSM barrier

DSM barrier Exit parallel

ba

ri

7

Po barrier()
AN

er()
—

Pq

barrier()

ZANANY

ier()
—

P2

7N\

\ bafrier()

er()
- %
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Evaluation

* We employed NAS Parallel Benchmarks [Bailey et al.'91] for the evaluation
® Unofficial version ported to C & OpenMP
® NAS EP, CG, FT, IS, and BT are experimented
® NAS LU, SP, and MG are excluded due to the implementation issues
® Compared systems against MENPS
® Intel OpenMP runtime
® Argo DSM [Kaxiras et al.'15]: an RDMA-based DSM system
* w/ our wrapper library because Argo does not directly support OpenMP
® MPI: the original MPIl implementation (differing from the OpenMP version)

Evaluation environment (Reedbush-H)

CPU Intel Xeon E5-2695 v4
2.1 GHz (max. 3.3 GHz with Turbo boost)
18 cores x 2 sockets / node

Memory 256GB / node

Interconnect InfiniBand FDR 4x, 2 links

oS Red Hat Enterprise Linux 7.2

Compiler Intel C++ Compiler version 18.1.163 Reedbush7

MPI Intel MPI Library version 2018.1.163 (ITC at the Univ. of TOkyO)

7https://uww.cc.u-tokyo.ac. jp/supercomputer/reedbush/service/
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Evaluation: NAS EP (embarassingly parallel)

Speedup

—— sequential
=+ MENPS (MPI+UCT)

—— MPI /*
--}-- 1CC OpenMP s
7
P
200 400 600 800 1000

Total number of worker threads

NAS EP (CLASS=D)

el
» )
& — sequential
--t-- Argo
$ MENPS (MPl-only)
--t-- 1CC OpenMP

S S

P e

100 200 300 400
Total number of worker threads

NAS EP (CLASS=C)

® CLASS means the problem size of the benchmarks
® The scalability results of CLASS=D
* MENPS scaled with multiple nodes
* No communications in the main computatin
® The performance is slightly worse than MPI in 32 nodes
® [nitialization and finalization incur memory accesses to the
shared area

® The scalability results of CLASS=C (smaller than CLASS=D)
® Comparing the performance with Argo DSM [Kaxiras et al. '15]
® We could not reproduce the good scalability of Argo in NAS EP
® MENPS scales until 238 cores (= 7 nodes)
® The speedup saturates due to the reduction phase
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Evaluation: NAS CG (conjugate gradient)
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® The scalability results of CLASS=D
* MENPS performs better than ICC OpenMP
® The maximum speedup was 63 times using 128 cores
* MPI's result exhibits a different trend

® |t uses a different algorithm from the shared-memory version
[Kwon et al."12]

® The scalability results of CLASS=C (smaller than CLASS=D)
* Comparison with Argo again
* We could not reproduce the good results
® Possible reasons of the reproduction failure

@ Problems of our modified benchmarks
® Heavy use of Pthreads calls [Gracia17]
© Other design-level issues (e.g., its coherence protocol)
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Evaluation: NAS FT, IS, BT

e MENPS could not accelerate other three benchmarks
¢ Single-node ICC OpenMP performs better than multi-node MENPS
® DSM inserts additional overhead in each fence and each read/write fault
® One possible reason: too small problem sizes for multi-node experiments

Relative performance comparisons between MENPS and ICC OpenMP.
Only the best settings are listed.

MENPS ICC OpenMP
Speedup  #ofthreads Speedup # of threads
FT 6.80 16 17.55 36
IS 2.94 16 3.74 8
BT 0.996 16 8.63 36
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Evaluation: Proposed prototol vs. baseline

Relative performance

~
o

wn

X3 Floating+Timestamp+FastRelease
N Floating+Timestamp

A Floating+Directory

BB Fixed+Timestamp

EP G FT 1S BT
(CLASS=C)  (CLASS=C)  (CLASS=C) (CLASS=C)  (CLASS=A)

Relative performance improvement of

different methods with 64 cores (two nodes)
normalized to the results of Fixed+Directory.

* Comparing the proposed methods w/ the baseline ones
® Fixed home-based (vs. Floating home-based)

* Merging diffs to the fixed home node
® Blocks are transferred in a coarse-grained manner
(differing from DiscontiguousWrite)

® Directory-based (vs. Timestamp-based)
* Home nodes hold directories instead of timestamps
* Floating+Timestamp mostly performs the best

* Timestamp-based method was important for CG
* Floating home-based method was important for BT
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Related Work: DSM

® Software DSM systems

® The first software DSM system: Ivy [Li et al. '88]
® Numerous examples of DSM systems in the 1990s:
e.g., TreadMarks [Keleher et al.'94], JIAJIA [Hu et al. 98]

* Similar idea to our floating home-based method:

Moving Home-Based Lazy Release Consistency [Chung et al.'99]
® Proactively migrates home nodes to accelerate writes

* RDMA-based DSM systems

® PackDiff + RDMA: e.g., [losevich et al. '05]
® DiscontiguousWrite: e.g., Argo [Kaxiras et al."15]
® Single-writer + RDMA: e.g., MAGI [Hong et al. "19]

* Home migration + RDMA: MENPS

Traditional

Multiple-Writer

No
fine-grained
Floating writes

Home-based /f’\\

\
( Single-Writer \
/

No diff \\\777//

packing

No remote
interrupts

RDMA
WRITE-based
Multiple-Writer

31/34



Related Work: PGAS

* Partitioned Global Address Space (PGAS)
* Global address space + local address space(s)
® Global address space is accessible by all of the nodes
® Local address spaces are not shared

Process 0 Process 1 Process (N-1)
Global : global array
address global array

Space” | I . H
Local Local objects /ut
address @ g&h put()
space '(: ) ( j

L = NS I - ]

® Pros ©: good scaling results, better productivity than MPI
® Cons @: requires changes to the shared-memory applications (no coherent caches)
* Many systems being actively developed (e.g., UPC [El-Ghazawi et al. '02], Global Arrays [Nieplocha et al. ‘06],
X10 [Charles et al. '05], Chapel [Chamberlain et al. '07], Co-array Fortran [Numrich et al. ‘98], XcalableMP [Lee et al.'10],
UPC++ [Zheng et al. "14], HPX [Kaiser et al. "14], DASH [Schuchart et al. "18], OpenSHMEM [Chapman et al. "10])
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Conclusions

* Developed a DSM library MENPS that exploits the performance of RDMA
® Runs OpenMP programs in C/C++ w/ minimal modifications
® Proposed two protocol-level changes for MENPS:

* Floating home-based protocol solves the trilemma of diff merging
* Hybrid invalidation enables decentralized coherence

® Evaluated MENPS using NAS Parallel Benchmarks:

* MENPS accelerated the OpenMP version of NAS EP & CG
* MENPS performed better than an RDMA-based DSM system Argo
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